Building Half-Metallicity in Graphene Nanoribbons by Direct Control over Edge States Occupation

نویسندگان

  • X. H. Zheng
  • X. L. Wang
  • T. A. Abtew
  • Z. Zeng
چکیده

Electronic structures of zigzag edged graphene nanoribbons (ZGNRs) doped with boron (B) or nitrogen (N) atoms are investigated by spin polarized first-principles calculations. We find that ZGNRs can be tuned to be either semiconducting, half-metallic, or metallic by controlling the distance of the impurity atoms to the edges. A new scheme is identified to achieve full half-metallicity in ZGNRs by doping B atom at one edge and N atom at the other. We find that the origin of the half-metallicity is due to interaction between the edge states and B/N atoms which results in direct control over the electron occupation of the edge states. This mechanism is so robust that full half-metallicity can always be produced in ZGNRs irrespective of the ribbon width, which opens new possibilities for applications of ZGNRs in spintronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons

Realization of half-metallicity in low dimensional materials is a fundamental challenge for nano spintronics, which is a critical component for next-generation information technology. Using the method of generalized Bloch theorem, we show that an in-plane bending can induce inhomogeneous strains, which in turn lead to spin-splitting in zigzag graphene nanoribbons and results in the highly desir...

متن کامل

Layer-selective half-metallicity in bilayer graphene nanoribbons

Half-metallicity recently predicted in the zigzag-edge graphene nanoribbons (ZGNRs) and the hydrogenated carbon nanotubes (CNTs) enables fully spin-polarized electric currents, providing a basis for carbon-based spintronics. In both carbon systems, the half-metallicity arises from the edge-localized electron states under an electric field, lowering the critical electric field Dc for the half-me...

متن کامل

Evidencing the existence of intrinsic half-metallicity and ferromagnetism in zigzag gallium sulfide nanoribbons

The achievement of half-metallicity with ferromagnetic (FM) coupling has become a key technology for the development of one-dimensional (1D) nanoribbons for spintronic applications. Unfortunately, in previous studies, such a half-metallicity always occurs upon certain external constraints. Here we, for the first time, demonstrate, via density functional theory (DFT), that the recent experimenta...

متن کامل

Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons.

We present a comprehensive theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene nanoribbons. The oxidation schemes considered include hydroxyl, lactone, ketone, and ether groups. Using screened exchange density functional theory, we show that these oxidized ribbons are more stable than hydrogen-terminated nanoribbons except for the case of the...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010